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Abstract— A new class of compensators with a PD-type
structure are proposed in this paper. Such systems have a
dead time inherent to the derivative filter, which cannot be
avoided. Using linear time delayed error equations, conditions
to assure stability despite such delay are developed. The filter
delay is assumed to be bounded by a known value.

I. INTRODUCTION

The PID controller continues to be a key of the industrial
control. It has been shown in (Astrom and Hagglund, 1995)
that more than 95% of the control loops in 1995 were
of PID type, however most of them were PI control.
Bialkowski described in 1993 that a typical paper mill has
more than 2000 control loops and that 97% use PI control
and only 20% of the control loops were found to work
well and decrease process variability (Bialkowski, 1993).
Ender observed that 30% of installed process controllers
operate in manual, that 20% of the loops used the default
parameters set by the controller manufacturer, and that
30% of the loops worked poorly because of the equipment
problems in valves and sensors (Ender, 1993). Therefore,
these are just some evidences that many controllers are put
in manual mode, and among those controllers that are in
automatic mode, derivative action is frequently switched
off (Astrom and Hagglund, 1995).

This tuning practice is motivated by the lack of measure-
ment of the controlled signal’s time-derivative (e.g. mechan-
ical systems usually have measurement of the positions, but
not of the velocities. This implies the inclusion of extra
sensors, the use of state observers, or other techniques,
like the dirty derivative developed in (Berghuis and Ni-
jmeijer, 1993), and the Levant differentiator (Berghuis and
Nijmeijer, 1998). These techniques are seriously affected by
noise, even if it is low, and the use of a filter is necessary.
However, once the time-delay introduced by the filter is not
viewed in isolation but as an inseparable part of the PID
dynamics, the implementation becomes a four-parameter
design and there is a lack of a widely used methodology
in industry to tune it (Isaksson and Graebe, 2002), further-
more, the use of a derivative filter induces a phase delay
which affects the controller performance and it can even
destabilize the overall process.

Despite the aforementioned problems, in (Isaksson and
Graebe, 2002) it was shown that PID controllers may give
superior results to PI control even for very simple processes
and that the use of default values of the derivative filter is
not necessarily a good idea. (Maghade and Swati, 2011),
on the other hand, showed that almost in every situation
derivative action with low pass filter improves the properties
of the industrial control systems compared to PI control.
As a first step to deal with this problem, the design of
PD-type controllers including filtering delay is considered.
It is proved that asymptotic regulation is achieved despite
the delay magnitude, which directly depends on the filter’s
order. This convergence is guaranteed through the use of
delay-differential error equations. Furthermore, the transient
response is studied by numerical simulations, and the ef-
fectiveness of the proposed approach is illustrated by a
fundamental example: the double integrator.

II. INTRODUCTORY EXAMPLE

Consider the case of a double-integrator ẍ(t) = u(t),
with noise η added to the output measurement, and ẋ1 is not
available for measurement, that is, only y(t) = x1(t)+η(t)
is available.

Figure 1. The double-integrator diagram

Applying a standard approach for trajectory tracking, one
defines the error signal e(t) = yr(t)− y(t) and coefficients
a0, a1 such that ë(t) + a1ė(t) + a0e(t) = 0 is stable. This
yields

(ÿr− η̈−u)+a1(ẏr− ẋ1− η̇)+a0(yr−x1−η) = 0, (1)

and a controller u(t) can be obtained. This control, however,
cannot be implemented since it depends on the noise, which
is assumed to be unknown.

A natural action is to filter the measured signal y out
(assuming high-frequency noise), as depicted in Figure 2.
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Figure 2. PD control using signal filtering and standard Luenberguer
observer.

The drawback of this approach is that a time delay is
introduced, so we dispose of x1(t− τ) instead of x1(t) at
time t. In this case we define e(t) = yr(t) − x1(t), which
leads to

u(t) = ÿr(t)+a1(ẏr(t)− ẋ1(t−τ))+a0(yr(t)−x1(t−τ))
(2)

and convergence of x1(t) to yr(t) is not guaranteed.

III. PROPOSED APPROACH

In this work, we propose two different schemes to derive
the PD controller using delayed information of the error
time-derivative, and eventually of the error itself. They are
based on delay-differential error equation, whose stability
is guaranteed for suitable parameter values. These are now
detailed.

A. Scheme 1: using delayed error time-derivative, and non-
delayed error

Consider the error equation:

ë(t) + aė(t− 1) + be(t) = 0 (3)

and assume that it is stable for some a, b ∈ <. Setting
e(t) = yr − x1(t) one obtains

u(t) = ÿr + a(ẏr(t− 1)− ẋ1(t− 1)) + b(yr(t)− x1(t))

Since the time-derivative term is delayed, then it can be
computed from the measured input signal, using a filtering
scheme that induces a constant time-delay. To this end, and
considering a 400hz sampling frequency, it is used

• a low-pass antialias Bessel filter with cutoff frequency
of 50hz;

• a finite-impulse-response (FIR) discrete filter (sam-
pling rate of 100hz), whose frequency response is
s from 0 to 10hz, and zero from 10 to 50hz This
is a combined low-pass and time-differentiator filter
design. The frequency response is shown in Figure 3;

• η provided by Simulink’s band-limited white noise
generator, using noise power of 0.00001 and sampling
time of 0.001.

The scheme is depicted in Figure 4 Bessel filter was chosen
because they have been optimized to obtain a maximally flat
delay response. Altough this is payed by a low selectivity
in the frequency response.

1
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Af (f)

Figure 3. FIR frequency response.

Figure 4. Scheme 1

This is conveyed with a second low-pass filtering stage,
included in the FIR differentiator. This double-function FIR
design was taken from (Stanley, 1975).

Using this scheme, a simulation was carried out using
Matlab/Simulink c©R2010a, running on windows 7, 64-bits.
The reference signal is

yr(t) = sin(3t) (4)

and the same Bessel filter as in Section II. The FIR
filter structure is a direct form, with numerator coefficients
[1.3353140743 2.4534859947 3.1983929114 3.3267967565
2.7467372783 1.551489954 0 -1.551489954 -2.7467372783
-3.3267967565 -3.1983929114 -2.4534859947 -
1.3353140743], and sample time of 0.01s. The combined
filter delay is 0.112s.

Parameters for equation (3), after time scaling, are: a =
5, b = 10.

Simulation results are shown in Figure 5.

Figure 5. Trajectory tracking, using eq. (3)
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The stability criteria for equation (3) are given in the
following propositions, taken from (Bellman and Cooke,
1963).

Proposition 1: (Bellman and Cooke, 1963). A system
with characteristic function

H(s) = s2 + ae−ss+ b (5)

is asymptotically stable if and only if:

• for 0 < b < (
π

2
)2, 0 < a <

π

2
− b(π

2
)−1;

• for (
π

2
+2pπ)2 < b <

3π2

4
+4π2(p2+p); (

π

2
+2pπ)−

b(
π

2
+ 2pπ)−1 < a < 0;
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3π2

4
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2
+(2p+1)π)2;b(

π

2
+

(2p+ 1)π)−1 − (
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+ (2p + 1)π)2 < b < −π
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4
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The stability regions are shown in Figure 6, taken from
(Brethe, 1994).

Figure 6. Stability regions for equation (3)

By simulating step responses of equation (3) in the
stability region close to the origin, several transient response
parameters were measured. They are: the 95% stabilization
time (Fig. 7), % overshoot (Fig. 8), and peak time (Fig. 9).

Figure 7. 95% stabilization time, step response of (3).

Figure 8. Overshoot (in %), step response of (3).

Figure 9. Peak time, step response of (3).
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Figure 10. Scheme 2.

Figure 11. Trajectory tracking, using eq. (6).

B. Scheme 2: using delayed error time-derivative, and
delayed error.

Now consider the case where the noise amplitude yields
a poor performance with the previous scheme. This requires
filtering of the measured signal. In this case, we consider
the error equation

ë(t) + aė(t− 1) + be(t− 1) = 0 (6)

which yields

u(t) = ÿr+a(ẏr(t−1)−ẋ1(t−1))+b(yr(t−1)−x1(t−1)).

This scheme is shown in Figure 10.
In this case, the tracking simulation with the same

parameters as in previous example are shown in Figure 11.
The stability region is taken from (Brethe, 1994) and shown
in Figure 12

The transient step response parameters were also obtained
by numerical simulation. They are: the 95% stabilization
time (Fig. 13), % overshoot (Fig. 14), and peak time (Fig.
15).
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Figure 12. Stability region for eq. (6).

Figure 13. 95% stabilization time, step response of (6).

Figure 14. Overshoot (in %), step response of (6).
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Figure 15. Peak time, step response of (6).
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CONCLUSIONS

In this work two different PD-type controllers were
proposed. The novelty with respect to the standard PD type,
is the inclusion of the delay introduced by the measured
signal filtering process. The use of delay-differential
error equations allows to guarantee the convergence of
the proposed controllers. The use of a simple FIR filter
as a combination of a low-pass filter and differentiator
displayed a good performance in simulation examples.

The numerical study of transient responses allows to
choose suitable controller parameter values. Finally, even
if the stability study and transient analysis is done for a
unit delay, it can be easily used for any arbitrary delay, by
time axis scaling, and any kind of noise can be considered
if it does not have important components at the system’s
operation frequency.

This is a first step towards the general case, where more
complex delay-differential error equations are required.
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